Search results for "TW Hydrae"

showing 4 items of 4 documents

X-shooter spectroscopy of young stars with disks. The TW Hydrae association as a probe of the final stages of disk accretion

2019

We investigate ongoing accretion activity in young stars in the TW Hydrae association (TWA, ~8-10 Myr), an ideal target to probe the final stages of disk accretion down to brown dwarf masses. Our sample comprises eleven TWA members with infrared excess, amounting to 85% of the total TWA population with disks, with spectral types between M0 and M9, and masses between 0.58 and 0.02 Msol. We employed homogeneous spectroscopic data from 300 to 2500 nm, obtained with X-shooter, to derive individual extinction, stellar parameters, and accretion parameters simultaneously. We then examined Balmer lines and forbidden emission lines to probe the physics of the star-disk interaction environment. We de…

AccretionOpen clusters and associations: individual: TWA010504 meteorology & atmospheric sciencesBrown dwarfFOS: Physical sciencesTechniques: spectroscopicAstrophysicsProtoplanetary diskStellar classification01 natural sciencesspectroscopic [Techniques]symbols.namesakeSettore FIS/05 - Astronomia E Astrofisicalow-mass [Stars]pre-main sequence [Stars]0103 physical sciencesStars: low-maTW HydraeQB Astronomy010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QC0105 earth and related environmental sciencesQBEarth and Planetary Astrophysics (astro-ph.EP)PhysicsInfrared excessBalmer seriesAstronomy and AstrophysicsDASAstrophysics - Astrophysics of GalaxiesAccretion (astrophysics)StarsQC PhysicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAccretion diskAstrophysics of Galaxies (astro-ph.GA)Accretion diskssymbolsStars: pre-main sequenceindividual: TWA [Open clusters and associations]Astrophysics - Earth and Planetary Astrophysics
researchProduct

Redshifted X-rays from the material accreting onto TW Hya: evidence of a low-latitude accretion spot

2017

High resolution spectroscopy, providing constraints on plasma motions and temperatures, is a powerful means to investigate the structure of accretion streams in CTTS. In particular, the accretion shock region, where the accreting material is heated to temperatures of a few MK as it continues its inward bulk motion, can be probed by X-ray spectroscopy. To attempt to detect for the first time the motion of this X-ray-emitting post-shock material, we searched for a Doppler shift in the deep Chandra/HETGS observation of the CTTS TW Hya. This test should unveil the nature of this X-ray emitting plasma component in CTTS, and constrain the accretion stream geometry. We searched for a Doppler shift…

AccretionTechniques: spectroscopicFOS: Physical sciencesAstrophysics01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesTW HydraeX-rays: starEmission spectrumSpectroscopy010303 astronomy & astrophysicsStars: variables: T TauriSolar and Stellar Astrophysics (astro-ph.SR)PhysicsPhotosphereLine-of-sight010308 nuclear & particles physicsHerbig Ae/BeAstronomy and AstrophysicsAstronomy and AstrophysicRedshiftAccretion (astrophysics)T Tauri starAstrophysics - Solar and Stellar AstrophysicsAccretion diskSpace and Planetary ScienceStars: pre-main sequence
researchProduct

X-ray optical depth diagnostics of T Tauri accretion shocks

2009

In classical T Tauri stars, X-rays are produced by two plasma components: a hot low-density plasma, with frequent flaring activity, and a high-density lower temperature plasma. The former is coronal plasma related to the stellar magnetic activity. The latter component, never observed in non-accreting stars, could be plasma heated by the shock formed by the accretion process. However its nature is still being debated. Our aim is to probe the soft X-ray emission from the high-density plasma component in classical T Tauri stars to check whether this is plasma heated in the accretion shock or whether it is coronal plasma. High-resolution X-ray spectroscopy allows us to measure individual line f…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsPlasmastars: atmospheres stars: coronae stars: pre-main sequence techniques: spectroscopic X-rays: starsAccretion (astrophysics)Spectral lineT Tauri starStarsSettore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsTW HydraeAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsSpectroscopyOptical depthAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

XMM-Newton spectroscopy of the metal depleted T Tauri star TWA 5

2005

We present results of X-ray spectroscopy for TWA 5, a member of the young TW Hydrae association, observed with XMM-Newton. TWA~5 is a multiple system which shows Halpha emission, a signature typical of classical T Tauri stars, but no infrared excess. From the analysis of the RGS and EPIC spectra, we have derived the emission measure distribution vs. temperature of the X-ray emitting plasma, its abundances, and the electron density. The characteristic temperature and density of the plasma suggest a corona similar to that of weak-line T Tauri stars and active late-type main sequence stars. TWA 5 also shows a low iron abundance (~0.1 times the solar photospheric one) and a pattern of increasin…

PhysicsInfrared excessAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysicsCoronaSpectral lineAccretion (astrophysics)StarsT Tauri starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceTW HydraeX-rays: stars techniques: spectroscopic stars: activity stars: abundances stars: pre-main sequence stars: individual: TWA 5Main sequenceAstronomy & Astrophysics
researchProduct